Design and Performance Evaluation of a Rotary Magnetorheological Damper for Unmanned Vehicle Suspension Systems

نویسندگان

  • Jae-Hoon Lee
  • Changwan Han
  • Dongsu Ahn
  • Jin Kyoo Lee
  • Sang-Hu Park
  • Seonghun Park
چکیده

We designed and validated a rotary magnetorheological (MR) damper with a specified damping torque capacity, an unsaturated magnetic flux density (MFD), and a high magnetic field intensity (MFI) for unmanned vehicle suspension systems. In this study, for the rotary type MR damper to have these satisfactory performances, the roles of the sealing location and the cover case curvature of the MR damper were investigated by using the detailed 3D finite element model to reflect asymmetrical shapes and sealing components. The current study also optimized the damper cover case curvature based on the MFD, the MFI, and the weight of the MR damper components. The damping torques, which were computed using the characteristic equation of the MR fluid and the MFI of the MR damper, were 239.2, 436.95, and 576.78 N·m at currents of 0.5, 1, and 1.5 A, respectively, at a disk rotating speed of 10 RPM. These predicted damping torques satisfied the specified damping torque of 475 N·m at 1.5 A and showed errors of less than 5% when compared to experimental measurements from the MR damper manufactured by the proposed design. The current study could play an important role in improving the performance of rotary type MR dampers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Evaluation of a Magnetorheological Damper Based Prosthetic Knee

In this work, a magnetorheological (MR) damper based above-knee prosthesis is design and evaluated based on its performance in swing phase and in stance phase. Initially, a dynamic system model for swing phase of a prosthetic leg incorporating a single-axis knee with ideal MR damper was built. The dynamic properties of the damper are represented with Bingham parametric model. From Bingham model...

متن کامل

Performance Evaluation of Magnetorheological Damper Valve Configurations Using Finite Element Method

The main purpose of this paper is to study various configurations of a magnetorheological (MR) damper valve and to evaluate their performance indices typically dynamic range, valve ratio, inductive time constant and pressure drop. It is known that these performance indices (PI) of the damper depend upon the magnetic circuit design of the valve. Hence, nine valve configurations are considered fo...

متن کامل

Fuzzy Control of Seat Vibrations for Semi-Active Quarter Vehicle System Utilizing Magneto rheological Damper

–This paper presents an investigation into the effectiveness of controllable magnetorheological (MR) damper for a semi-acive vehicle model with passenger seat. Mathematical model has been experimentally developed for controller design using Choi et al. model. A quarter vehicle model has been employed for system performance evaluation via Matlab through numerical simulation. System behaviour rel...

متن کامل

H∞-PD Controller for Suspension Systems with MR Dampers

In this paper, we consider the implementation of a static H∞ output feedback controller to a quarter vehicle suspension system with a semi-active magnetorheological fluid (MRF) damper. Unlike most of the existing literature, all the states in the equation of motion are relative displacements and velocities between sprung, unsprung masses and road disturbance instead, in addition the input to th...

متن کامل

Vertical Dynamics Modeling and Simulation of a Six-Wheel Unmanned Ground Vehicle

Vertical dynamics modeling and simulation of a six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013